Chemistry (UPSC Optionals)

 

Syllabus

PAPER-I

1. Atomic Structure:

Heisenberg’s uncertainty principle, Schrodinger wave equation (time independent); Interpretation of wave function, particle in one-dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of s, p and d orbitals.

2. Chemical Bonding:

Ionic bond, characteristics of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments; Valence bond theory, concept of resonance and resonance energy; Molecular orbital theory (LCAO method); bonding in H2+, H2, He2+ to Ne2, NO, CO, HF, and CN–; Comparison of valence bond and molecular orbital theories, bond order, bond strength and bond length.

3. Solid State:

Crystal systems; Designation of crystal faces, lattice structures and unit cell; Bragg’s law; X-ray diffraction by crystals; Close packing, radius ratio rules, calculation of some limiting radius ratio values; Structures of NaCl, ZnS, CsCl and CaF2; Stoichiometric and nonstoichiometric defects, impurity defects, semi-conductors.

4. The Gaseous State and Transport Phenomenon:

Equation of state for real gases, intermolecular interactions and critical phenomena and liquefaction of gases, Maxwell’s distribution of speeds, intermolecular collisions, collisions on the wall and effusion; Thermal conductivity and viscosity of ideal gases.

5. Liquid State:

Kelvin equation; Surface tension and surface energy, wetting and contact angle, interfacial tension and capillary action.

6. Thermodynamics:

Work, heat and internal energy; first law of thermodynamics.

Second law of thermodynamics; entropy as a state function, entropy changes in various processes, entropy–reversibility and irreversibility, Free energy functions; Thermodynamic equation of state; Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G, Cp and Cv, ? and ?; J-T effect and inversion temperature; criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem, introductory idea of third law of thermodynamics.

7. Phase Equilibria and Solutions:

Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids–upper and lower critical solution temperatures; partial molar quantities, their significance and determination; excess thermodynamic functions and their determination.

8. Electrochemistry:

Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties.

Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries.

Processes at electrodes; double layer at the interface; rate of charge transfer, current density; overpotential; electroanalytical techniques: Polarography, amperometry, ion selective electrodes and their uses.

9. Chemical Kinetics:

Differential and integral rate equations for zeroth, first, second and fractional order reactions; Rate equations involving reverse, parallel, consecutive and chain reactions; branching chain and explosions; effect of temperature and pressure on rate constant; Study of fast reactions by stop-flow and relaxation methods; Collisions and transition state theories.

10. Photochemistry:

Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields.

11. Surface Phenomena and Catalysis:

Absorption from gases and solutions on solid adsorbents, Langmuir and B.E.T. adsorption isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts.

12. Bio-inorganic Chemistry:

Metal ions in biological systems and their role in ion transport across the membranes (molecular mechanism), oxygen-uptake proteins, cytochromes and ferredoxins.

13. Coordination Compounds:

(i) Bonding theories of metal complexes; Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and electronic spectra of metal complexes.

(ii) Isomerism in coordination compounds; IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planer complexes; thermodynamic and kinetic stability of complexes.

(iii) EAN rule, Synthesis structure and reactivity of metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl compounds.

(iv) Complexes with aromatic systems, synthesis, structure and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization; Compounds with metal-metal bonds and metal atom clusters.

14. Main Group Chemistry:

Boranes, borazines, phosphazenes and cyclic phosphazene, silicates and silicones, Interhalogen compounds; Sulphur – nitrogen compounds, noble gas compounds.

15. General Chemistry of ‘f’ Block Elements:Lanthanides and actinides; separation, oxidation states, magnetic and spectral properties; lanthanide contraction.

Paper-II

1. Delocalised Covalent Bonding:

Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones.

2. (i) Reaction Mechanisms: General methods (both kinetic and non-kinetic) of study of mechanism of organic reactions: isotopic method, cross-over experiment, intermediate trapping, stereochemistry; energy of activation; thermodynamic control and kinetic control of reactions.

(ii) Reactive Intermediates: Generation, geometry, stability and reactions of carbonium ions and carbanions, free radicals, carbenes, benzynes and nitrenes.

(iii) Substitution Reactions: SN1, SN2 and SNi mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds–pyrrole, furan, thiophene and indole.

(iv) Elimination Reactions: E1, E2 and E1cb mechanisms; orientation in E2 reactions–Saytzeff and Hoffmann; pyrolytic syn elimination – Chugaev and Cope eliminations.

(v) Addition Reactions: Electrophilic addition to C=C and C?C; nucleophilic addition to C=0, C?N, conjugated olefins and carbonyls.

(vi) Reactions and Rearrangements: (a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner-Meerwein rearrangements.

(b) Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions.

3. Pericyclic Reactions: Classification and examples; Woodward-Hoffmann rules – electrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach.

4. (i) Preparation and Properties of Polymers: Organic polymers–polyethylene, polystyrene, polyvinyl chloride, teflon, nylon, terylene, synthetic and natural rubber.

(ii) Biopolymers: Structure of proteins, DNA and RNA.

5. Synthetic Uses of Reagents:

OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAlH4, NaBH4, n-BuLi and MCPBA.

6. Photochemistry:

Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions.

7. Spectroscopy:

Principle and applications in structure elucidation:

(i) Rotational: Diatomic molecules; isotopic substitution and rotational constants.

(ii) Vibrational: Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules.

(iii) Electronic: Singlet and triplet states; n p* and p p* transitions; application to conjugated double bonds and conjugated carbonyls–Woodward-Fieser rules; Charge transfer spectra.

(iv) Nuclear Magnetic Resonance (1H NMR): Basic principle; chemical shift and spin-spin interaction and coupling constants.

(v) Mass Spectrometry: Parent peak, base peak, metastable peak, McLafferty rearrangement.

Strategy

Paper 1

Paper 1 of Chemistry has two major branches: Physical Chemistry and Inorganic Chemistry. These two branches are simple as well as scoring. The syllabus does not clearly define Section A and Section B in Paper 1. However, in the main examination question paper Section A invariably contains three questions including compulsory from Physical Chemistry. There is usually one question from Inorganic Chemistry.

The first two topics, Atomic Structure and Chemical Bonding, are conceptual and should be prepared from standard sources. Even though these portions can give you direct questions as well, their importance will be felt in many other sections of the course.


Solid State Chemistry, you need to prepare separately for numerical and theoretical problems. Gaseous State is a newly added section in Paper 1 and the best thing about this section is that it has a simple mathematical base. Prepare it adequately from a good book and it is bound to be rewarding.

Thermodynamics, be careful to maintain an orientation of Chemistry. There is a common tendency among engineers to treat the questions too mathematically. But in Chemistry, you have to treat heat change along with chemical change. For a good score, your derivations must be standard, i.e. as covered in books like S Glasstone’s. You can be somewhat selective in Thermodynamics section, based on past trends. Statistical Thermodynamics is a newly-added part, and it is quite scoring. The section on Phase Equilibria needs good writing practice besides command over numerical problems. The emphasis in electrochemistry should be on numerical problems, as they are relatively easy and make the paper scoring.

Chemical Kinetics and Photochemistry are, once again, predominantly numerical-based areas. So practice will be the key to handle these sections well. Photochemistry is especially important; it has been giving numerical problems of at least 30 marks every year.

Coordination chemistry is a large topic, covering nearly two full-length questions. Students are advised to cover this section thoroughly. The topic of Bio-Inorganic Chemistry requires some good material collection. Bob Buchanan’s book on Plant Molecular Biology and Biochemistry will be a useful source.

Rest of the topics in Paper 1 should be covered selectively, provided you have covered the preceding parts well.

Paper 2

Paper 2 comprises completely of Organic Chemistry. In the new scheme of the syllabus, it’s a highly scoring paper due to several factors: mathematical orientation, straight factual queries, objective nature of most of the question, no dearth of quality material and emphasis on reaction mechanisms.

The student, while preparing for Paper 2, is required to keep the following things in mind:

  • Your approach has to be simple, standard and to the point;

  • you require to practice the numerical problems rigorously and you must have a clear knowledge of reaction mechanisms, as the questions are increasingly being asked straight and factual.

  • In Pericyclic Reaction section, a greater emphasis has to be on diagrams rather than on theoretical explanation and practice name reactions thoroughly from standard sources.

  • The orientation of orbitals and molecular orbital diagrams are necessary.

  • In re-agent section also, your approach has to be completely factual.

Question Papers

Suggested Readings

Books on Chemistry as Optional subject for IAS Exam are as Follows:

Organic Chemistry

  • Bonding and shape of organic molecules, Stereo chemistry of carbon compound – Reactions and reagents – O.P. Agarwal
  • A guide to mechanism in organic chemistry – Peter Sykes
  • Rest all the chapters – A text book of organic chemistry – Bahl & Ba

 

 

Inorganic Chemistry

  • Atomic Structure – Principle of physical chemistry – Puri, Sharma & Pathwa
  • Advance Inorganic Chemistry – J.D. Lee
  • Chemical Periodicity, Chemical bonding,Coordination compound- Maden, Malik, Tuli
  • Theoretical principles of inorganic chemistry – G.S. Manku,
  • Extradiction of metals, Principle of inorganic chemistry – Puri, Sharma, Jauhar.
  • Rest all the chapters – An advance inorganic chemistry – J.D. Lee
  • Pollution and its control – A text book of environmental chemistry and pollution – S.S. Dara.

 

 

Physical Chemistry

  • Principals of Physical Chemistry (Gaseous state, Thermodynamics, Phase rule, solutions, Colligative properties, Electro
  • Chemistry, Catalysis, Colloids) – Puri, Sharma & Pathawa
  • Chemical kinetics – Advance physical chemistry – Gurdeep Raj
  • Photo chemistry – A text book of physical chemistry (Vol. – IV) – K.L. Kapoor
  • Advance physical chemistry – Gurdeep Raj

 

Leave a Reply

Your email address will not be published. Required fields are marked *